Extensions 1→N→G→Q→1 with N=C2 and Q=C422D5

Direct product G=N×Q with N=C2 and Q=C422D5
dρLabelID
C2×C422D5160C2xC4^2:2D5320,1150


Non-split extensions G=N.Q with N=C2 and Q=C422D5
extensionφ:Q→Aut NdρLabelID
C2.1(C422D5) = C10.92(C4×D4)central extension (φ=1)320C2.1(C4^2:2D5)320,560
C2.2(C422D5) = C425Dic5central extension (φ=1)320C2.2(C4^2:2D5)320,564
C2.3(C422D5) = (C2×C42)⋊D5central extension (φ=1)160C2.3(C4^2:2D5)320,567
C2.4(C422D5) = (C2×Dic5).Q8central stem extension (φ=1)320C2.4(C4^2:2D5)320,285
C2.5(C422D5) = (C22×C4).D10central stem extension (φ=1)320C2.5(C4^2:2D5)320,289
C2.6(C422D5) = C10.(C4⋊D4)central stem extension (φ=1)160C2.6(C4^2:2D5)320,302
C2.7(C422D5) = (C22×D5).Q8central stem extension (φ=1)160C2.7(C4^2:2D5)320,303

׿
×
𝔽